Note

CHARACTERISTIC KINETIC PARAMETERS IN SOLID + SOLID + GAS REACTIONS. COMPENSATION EFFECTS

M.R. ALVAREZ, M.J. TELL0 and E.H. BOCANEGRA

Departamento de Fisica, Facultad de Ciencias. Universidad de1 Pais Vasco, Bilbao (Spain)

(Received 24 June 1980)

The influence of **experimental** factors on thermogravimetric results using both dynamic and isothermal or quasi-isothermal methods has been extensively studied in the last few years (see for example ref. 1 and refs. cited therein). The interest in this kind of study is to acquire enough experimental data under very well-defined conditions to establish a general experimental procedure as well as a theoretical methodology [2,3].

Two characteristic parameters are especially influenced by experimental conditions: the activation energy and the pre-exponential factor [4]. For instance, the values found in the literature for the activation energy and preexponential factor of CO₃Ca range from 37 to 377 kcal mole⁻¹ and 10^{2} - 10^{68} , respectively. Zsákó [5] observed an interesting dependence between both magnitudes, and explained it as arising from a "compensation" effect in the sense that an increase in the activation energy implies an increase in the probability of nucleation.

The purpose of this paper is to present a detailed study on the existence of this compensation effect in a solid \rightarrow solid + gas reaction. We show that this' effect is common to dynamic as well as isothermal procedures, in contrast 'to previously reported studies [61.

EXPERIMENTAL

 $(CH₃NH₃)$ ₂MnCl₄ was the compound used throughout the study [7]. The reason for this choice was to study a material more complex than those previously studied (i.e. calcium carbonate or calcium oxalate). Problems related to the synthesis, characterization, as well as thermal stability, have been published previously [7]. In the present study our analysis is restricted to the first step of the decomposition process [71. Experimental details about experimental equipment as well as calibration and working conditions can be seen in refs. 2 and 15. In order to check the possible influence on the results of the instrument used, TG measurements were also carried out using a Dupont thermobalance with simultaneous TG and DTG.

The experimental conditions were: dynamic, dry N_2 atmosphere at 25 ml min⁻¹, a constant sample mass of 5 mg for all the experimental runs, and heating rates of 2,5; 5; 5,5; 10 and 20° C min⁻¹ for dynamic runs and for the isothermal regime 463; 473; 483 and 493 K, respectively.

 \mathbf{I}

Values of kinetic parameters from different theoretical methods

TABLE 1

l,

 $\ddot{}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

117

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$. The $\mathcal{L}^{\text{max}}_{\text{max}}$

different theoretical methods TABLE 2
Values of bisati

 $\ddot{}$

RESULTS AND DISCUSSION

Tables 1 and 2 show the kinetic data for each theoretical analysis method. From Table 1 we can see how E increases with V_c which is in agreement with **our previous results for calcium oxalate [2]. This can be explained using Kissinger's correlation 1161 which can be written**

$$
\ln\left(\frac{V_c}{CT_{\text{max}}^2}\right) = -\frac{E}{RT_{\text{max}}} \tag{1}
$$

where values of C lie between 2×10^2 and 10^8 and T_{max} is the temperature **at the point of maximum reaction rate which shows a linear dependence with** *V,* **given by**

$$
T_{\text{max}} = 508 + 3.8V_{\text{c}} \tag{2}
$$

It can be seen (Table 1) that a similar relationship to the one between *E* and V_c also exists for log A . Figure 1 is a plot of log A vs. E for both **dynamic and isothermal data from Table 1 fitting a straight line given by**

$$
\log A = -0.41 + 0.38E \tag{3}
$$

The same type of correlation was found for the Dupont thermobalance as **shown in Fig. 2 (Table 2).**

This correlation between *A* **and E (compensation effect) can be derived from the Arrhenius equation [17,18]**

$$
A = Z \exp\left(\frac{\Delta S^*}{R}\right) \tag{4}
$$

Fig. 1. Compensation effect from data in Table 1. $\log A = 0.385E - 0.413$; $r^2 = 0.985$. Horrowitz-Metzger; O, Coats-Redfern; \triangle , Satava (geometrical); **A**, maximum point; **a**, **Freeman-Carroll**; □, ratio; ▽, Friedman; ▼, isothermal.

Fig. 2. Compensation effect from data in Table 2. $log A = 0.451E - 0.592$; $r^2 = 0.972$. Θ , Horowitz-Metzger; \circ , Coats-Redfern; \wedge , Satava (graphical); A, maximum point; a, Freeman-Carroll; \Box , ratio.

where ΔS^* is the entropy variation of the activated complex and as

$$
d(\Delta S^*) = \frac{1}{T} d(\Delta H^*)
$$
 (5)

it follows

$$
\frac{\text{d}(\log A)}{\text{d}E} = \frac{\log e}{RT_m} \tag{6}
$$

where $\Delta H^* \simeq E$ and T_m is a characteristic parameter for each compound (564 K in our case). The invariance of this parameter under several theoretical methods and experimental conditions should be emphasized.

The experimental results in this paper have confirmed the existence of a logarithmic correlation between the activation energy, E, and the preexponential factor, A. Nevertheless, more experimental work with other compounds is required to confirm the general character of the characteristic parameter, T_m . At present a similar study on other possible invariant characteristics of kinetic parameters [19] is being carried out in our laboratory.

REFERENCES

- 1 K. Nagase and H. Yokobayashi, Thermochim. Acta, 35 (1980) 99.
- 2 M.R. Alvarez, J.J. Icaza, E.H. Bocanegra and M.J. Tello, Thermochim. Acta, 12 (1975) 117.
- 3 M.R. Alvarez, Doctoral Theses, Bilbao, 1979.
- 4 P. Valet, Thermogravimétrie, Gauthier-Villars, Paris, 1972.
- 5 J. Zsákó and H.E. Arz, J. Therm. Anal., 6 (1974) 651.
- 6 P. Gallagher and W. Johnson, Jr., Thermochim. Acta, 6 (1973).
- 7 M.J. Tello, H. Arend, E.H. Bocanegra and M.A. Arriandiaga, Thermochim. Acta, 11 (1975) 96.
- H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.
- A.W. Coats and 3.P. Redfern, Nature (London), 20 (1964) 88.
- V. Satava, Thermochim. Acta, 2 (1971) 423.
- L. Reich, Polym. Lett., 2C (1964) 621.
- ES. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.
- R.W. Mickelson and I.N. Einhorn, Thermochim. Acta, 1 (1970) 147.
- H.L. Friedman, J. Polym. Sci., 6 (1965) 183.
- 15 M.J. Tello, J. Fernandez, M. Galparsoro and E.H. Bocanegra, Thermochim. Acta, 191 (1977)221.
- H.E. Kissinger, Anal. Chem., 29 (1959) 1702.
- Keith and J. Laidler, Reaction Kinetics, Vol. 1, Pergamon Press, Oxford, 1972.
- P.P.H. Gasser and W.G. Richards, Entropy and Energy Levels, Clarendon Press, Oxford, 1979.
- 19 To be published